通信工程系

王康佳博士,副教授,硕士生导师

  • 研究方向 :三维集成电路热设计、分数阶电路系统、分数阶微积分、非线性振动理论、孤子理论与可积系统、变分原理等
  • 办公室 :综合实验大楼 135室
  • E-mail :konka05@163.com;kangjiaw@hpu.edu.cn
  • 办公电话 :0391-3986821
职称 博士,副教授,硕士生导师 办公室 综合实验大楼 135室
电话 0391-3986821 邮箱 konka05@163.com;kangjiaw@hpu.edu.cn
研究方向 三维集成电路热设计、分数阶电路系统、分数阶微积分、非线性振动理论、孤子理论与可积系统、变分原理等
个人详情

基本信息:

王康佳,男,九三学社社员,工学博士,副教授,betway必威中文版官网硕士生导师。以第一及通信作者发表SCI论文100余篇(一区10篇,二区18篇),其中ESI高被引论文10篇,ESI热点论文2篇,论文被引3700余次,当前个人H-Index指数为33。2021年-2024年连续入选美国斯坦福大学评选的全球排名前2%顶尖科学家榜单(年度科学影响力榜单)。2024年入选美国斯坦福大学评选的全球排名前2%顶尖科学家榜单(终身科学影响力榜单)。入选爱思唯尔发布的2024“中国高被引学者”榜单(Highly Cited Chinese Researchers)-电气工程。2024年入选国际学术机构/平台ScholarGPS发布的全球前0.05%顶尖科学家近五年(Prior 5 Years)榜单

主要研究方向:三维集成电路热设计、分数阶电路系统、分数阶微积分、非线性振动理论、孤子理论与可积系统、变分原理等。


教育及工作经历:

2005.9-2009.7河南师范大学,电子信息工程,本科

2009.9-2012.7华南师范大学,电磁场与微波技术,硕士

2014.9-2017.6华南师范大学,微电子学与固体电子学,博士

2017.6-今必威betway官网入口,betway必威中文版官网,副教授


教学情况:

主要承担《FPGA原理及应用》等专业课程的教学任务。


科研项目/课题:

1.河南省高等学校重点科研项目,主持,已结项;

2.青年创新探索性基金,主持,已结项;

3.必威betway官网入口博士基金,主持,在研;

4.国家自然科学基金面上项目,参与,在研。


学术兼职:

1.Advances in Mathematical Physics编委(SCI);

2.Discrete Dynamics in Nature and Society编委(SCI);

3.Contemporary Mathematics编委(ESCI);

4.Fractals:Complex Geometry, Patterns, and Scaling in Nature and Society客座主编(SCI)

5.Frontiers in Physics客座主编(SCI)

6.Fractal and Fractional客座主编(SCI)

7.Mathematical Problems in Engineering编委


代表性论文:

1.Wang K J,An effective computational approach to the local fractional low-pass electrical transmission lines model, Alexandria Engineering Journal, 2025, 110 (1): 629-635.

2.Wang K J,Localized wave and other special wave solutions to the (3+1)-dimensional Kudryashov-Sinelshchikov equation, Mathematical Methods in the Applied Sciences, 2025, 48 (8): 8911-8924.

3.Wang K J,Bifurcation and sensitivity analysis, chaotic behaviors, variational principle, Hamiltonian and diverse wave solutions of the new extended integrable Kadomtsev-Petviashvili equation, Physics Letters A, 2025, 534, 130246.

4.Wang K J, The generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili equation: Resonant multiple soliton, N-soliton, soliton molecules and the interaction solutions, Nonlinear Dynamics, 2024, 112, 7309-7324.

5.Wang K J, Dynamics of resonant soliton, novel hybrid interaction, complex N-soliton and the abundant wave solutions to the (2+1)-dimensional Boussinesq equation, Alexandria Engineering Journal, 2024, 105: 485-495.

6.Wang K J, Resonant multiple wave, periodic wave and interaction solutions of the new extended (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Nonlinear Dynamics, Nonlinear Dyn 2023, 111: 16427-16439.

7.Wang K J, Generalized variational structure of the fractal modified KdV-Zakharov-Kuznetsov equation, Fractals, 2023, 31, (7): 2350084.

8.Wang K J, N-soliton, breather, lump solutions and diverse travelling wave solutions of the fractional (2+1)-dimensional Boussinesq equation, Fractals, 2023, 31 (3): 2350023.

9.Wang K J, The fractal active Low-pass filter within the local fractional derivative on the Cantor set, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2023, 42 (6): 1396-1407.

10.Wang K. J,Dynamics of breather, multi-wave, interaction and other wave solutions to the new (3+1)-dimensional integrable fourth-order equation for shallow water waves, International Journal of Numerical Methods for Heat and Fluid Flow, 2023, 33, (11): 3734-3747.

11.Wang K J, On the zero state-response of the ʒ-order R-C circuit within the local fractional calculus, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2023,42(6):1641-1653.

12.Wang K J, A fast insight into the nonlinear oscillators with coordinate-dependent mass, Results in physics, 2022, 39: 105759.

13.Wang K J,A fractal modification of the Sharma-Tasso-Olver equation and its fractal generalized variational principle, Fractals, 2022, 30(6): 2250121.

14.Wang K J,Generalized variational principles and new abundant wave structures of the fractal coupled Boussinesq equation, Fractals, 2022, 30(7): 2250152.

15.Wang K J. On a High-pass filter described by local fractional derivative, Fractals, 28(3) (2020), 2050031.

16.Wang K J, Variational principle and approximate solution for the fractal generalized Benjamin-Bona-Mahony-Burgers equation in fluid mechanics,Fractals,2021, (29) 3: 2150075.

17.Wang K J, A new perspective on the study of the fractal coupled Boussinesq-Burger equation in shallow water, Fractals, 2021,29( 5): 2150122.

18.Wang K J, Periodic solution of the (2+1)-dimensional nonlinear electrical transmission line equation via variational method, Results inphysics,2021(20):103666.

19.Wang K J. The transient analysis for zero-input response of fractal RC circuit based on local fractional derivative, Alexandria Eng. J. 2020, 59(6): 4669-4675.

20.Wang K J. A a-order R-L high-pass filter modeled by local fractional derivative, Alexandria Engineering Journal, 2020,59 (5) pp. 3244-3248.